3.2732 \(\int \frac{(1-2 x)^{3/2}}{\sqrt{2+3 x} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=98 \[ -\frac{202}{225} \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )-\frac{4}{45} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}+\frac{272}{225} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(-4*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/45 + (272*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
 35/33])/225 - (202*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/225

________________________________________________________________________________________

Rubi [A]  time = 0.0294153, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {102, 158, 113, 119} \[ -\frac{4}{45} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}-\frac{202}{225} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{272}{225} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/(Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]

[Out]

(-4*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/45 + (272*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
 35/33])/225 - (202*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/225

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{\sqrt{2+3 x} \sqrt{3+5 x}} \, dx &=-\frac{4}{45} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{2}{45} \int \frac{\frac{59}{2}-136 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{4}{45} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}-\frac{272}{225} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx+\frac{1111}{225} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{4}{45} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{272}{225} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{202}{225} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.147019, size = 92, normalized size = 0.94 \[ \frac{1}{675} \left (3605 \sqrt{2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )-60 \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}-272 \sqrt{2} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/(Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]

[Out]

(-60*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] - 272*Sqrt[2]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2
] + 3605*Sqrt[2]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/675

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 140, normalized size = 1.4 \begin{align*} -{\frac{1}{20250\,{x}^{3}+15525\,{x}^{2}-4725\,x-4050}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 3605\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -272\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +1800\,{x}^{3}+1380\,{x}^{2}-420\,x-360 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x)

[Out]

-1/675*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(3605*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*Ellip
ticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-272*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/1
1*(66+110*x)^(1/2),1/2*I*66^(1/2))+1800*x^3+1380*x^2-420*x-360)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*sqrt(3*x + 2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{15 \, x^{2} + 19 \, x + 6}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*(-2*x + 1)^(3/2)/(15*x^2 + 19*x + 6), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (1 - 2 x\right )^{\frac{3}{2}}}{\sqrt{3 x + 2} \sqrt{5 x + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**(1/2)/(3+5*x)**(1/2),x)

[Out]

Integral((1 - 2*x)**(3/2)/(sqrt(3*x + 2)*sqrt(5*x + 3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*sqrt(3*x + 2)), x)